什么是蝴蝶定理?

2024-05-05 07:08

1. 什么是蝴蝶定理?

蝴蝶定理   Butterfly theorem 
  概况:
  蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 
  出现过许多优美奇特的解法,其中最早的,应首推霍纳在职1815年所给出的证法。至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。 
  这里介绍一种较为简便的初等数学证法。 
  证明:过圆心O作AD与BC的垂线,垂足为S、T,连接OX,OY,OM,SM,MT。 
  ∵△AMD∽△CMB
  ∴AM/CM=AD/BC
  ∵SD=1/2AD,BT=1/2BC 
  ∴AM/CM=AS/CT
  又∵∠A=∠C 
  ∴△AMS∽△CMT
  ∴∠MSX=∠MTY
  ∵∠OMX=∠OSX=90°
  ∴∠OMX+∠OSX=180°
  ∴O,S,X,M四点共圆
  同理,O,T,Y,M四点共圆
  ∴∠MTY=∠MOY,∠MSX=∠MOX
  ∴∠MOX=∠MOY ,
  ∵OM⊥PQ
  ∴XM=YM
  这个定理在椭圆中也成立,如图
  1,椭圆的长轴A1、A2与x轴平行,短轴B1B2在y轴上,中心为M(o,r)(b>r>0)。
  (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;
  (Ⅱ)直线y=k1x交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0)。
  求证:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)
  (Ⅲ)对于(Ⅱ)中的C,D,G,H,设CH交X轴于点P,GD交X轴于点Q。
  求证: | OP | = | OQ |。
  (证明过程不考虑CH或GD垂直于X轴的情形)
  2.解答:北京教育考试院招生考试办公室专家在公布的《2003年全国普通高等学校招生统一考试试题答案汇编》中给出的参考解答如下:
  (18)本小题主要考查直线与椭圆的基本知识,考查分析问题和解决问题的能力。满分15分。
  (Ⅰ)解:椭圆方程为x2/a2+(y-r)2/b2=1
  焦点坐标为
  (Ⅱ)证明:将直线CD的方程y=k�8�6x代入椭圆方程,得b2x2+a2(k1x-r)2=a2b2,
  整理,得
  (b2+a2k12)x2-2k1a2rx+(a2r2-a2b2)=0
  根据韦达定理,得
  x1+x2=2k1a2r/(b2+a2k12), x1·x2=(a2r2-a2b2)/( b2+a2k12),
  所以x1x2/(x1+x2)=( r2-b2)/2k1r ①
  将直线GH的方程y=k2x代入椭圆方程,同理可得
  x3x4/(x3+x4)=( r2-b2)/2k2r ②
  由①,②得k1x1x2/(x1+x2)=(r2-b2/2r=k2x3x4/(x3+x4) 
  所以结论成立。
  (Ⅲ)证明:设点P(p,o),点Q(q,o)。
  由C,P,H共线,得
  (x1-p)/( x4-p)=k1x1/k2x4
  解得P=(k1-k2)x1x4/(k1x1-k2x4)
  由D,Q,G共线,同理可得
  q=(k1-k2)x2x3/(k1x2-k2x3)
  由k1x1x2/(x1+x2)=k2x3x4/(x3+x4),变形得:
  x2x3/(k1x2-k2x3)=x1x4/(k1x1-k2x4)
  即:(k1-k2)x2x3/(k1x2-k2x3)=(k1-k2)x1x4/(k1x1-k2x4)
  所以 |p|=|q|,即,|OP|=|OQ|。
  3.简评
  本小题主要考查直线与椭圆等基本知识,考查分析问题和解决问题的能力。试题入门容易,第(Ⅰ)问考查椭圆方程、待定系数法、坐标平移和椭圆性质:焦点坐标、离心率、看图说话即可解决问题,但考查的却都是重点内容。
  第(Ⅱ)问是典型的直线与椭圆的位置关系问题。待证式子中含有x1x2,x1+x2,x3x4,x3+x4这样的对称式,式子结构对称优美,和谐平衡,使人很容易联想起一元二次方程根与系数关系的韦达定理,启示了证明问题的思路。这里用到了解析几何最根本的思想和最根本的方法。解两个联立的二元二次方程组,用代入消元法得到一元二次方程,分离系数利用韦达定理给出关于x1x2,x1+x2,x3x4,x3+x4的表达式,再分别代入待证式两边运算即达到证明目的。证明的过程中,由两个联立方程组结构的相似性运用了“同理可得”,整个证明过程也令人赏心悦目,感受到了逻辑证明与表达的顺畅、简约的美的魅力。
  第(Ⅲ)问证明中用到了三点共线的充要条件,用到了过两点的直线的斜率公式,分别解出p,q以后,|OP|=|OQ|等价转化成了p= -q(或p+q=0。)此时分析前提条件(Ⅱ)及待证结论p= -q,关键在于沟通k1x1x2/(x1+x2)=k2x3x4/(x3+x4)与x1x4/(k1x1-k2x4)=-x2x3/(k1x2-k2x3)的联系。参考解答中的表述略去了一些变形的中间过程,使人不易看出沟通的线索,以及命题人变形的思路,因此读者理解起来感到困难。如果将两式做如下变形,则思路就显然顺畅自然。
  设:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)为①式,两边同取倒数,得
  1/k1x2+1/k1x1=1/k2x4+1/k2x3 ①’
  设:x1x4/(k1x1-k2x4)=-x2x3/(k1x2-k2x3)为 ②式,两边同取倒数,得k1/x4-k2/x1=k2/x2-k1/x3,移项得k2/x1+k2/x2=k1/x3+k1/x4 ②’
  将①’两边同乘以k1·k2,即得
  k2/x1+k2/x2=k1/x3+k1/x4
  它与②’完全一样。这里利用两式同时变形的方法可以较容易实现目的,有分析、有综合,有思维,有运算。思路的选择有赖于对式子特征的观察联想。
  综观这道题的题目特征及解答过程,我们看到了用代数方程但方法处理几何问题的作用与威力。
  4.赏析:
  上面我们看到,试题的结构及其解答都令人感到赏心悦目,至此,我们不禁要追问一句:试题是怎么命制出来的?它的背景是什么?它对我们的数学学习与教学、高三复习与备考有什么启示?
  关于圆,有一个有趣的定理:
  蝴蝶定理 设AB是圆O的弦,M是AB的中点。过M作圆O的两弦CD、EF,CF、DE分别交AB于H、G。则MH=MG。
  这个定理画出来的几何图,很像一只翩翩飞舞的蝴蝶,所以叫做蝴蝶定理(图2)。
  盯着试题的图1仔细看,它像不像椭圆上翩翩飞舞的蝴蝶?
  像,而且像极了。试题的证明过程及结果告诉我们,椭圆中蝴蝶定理依然成立,而且是用解析方法证明的。如果令椭圆的长轴,短轴相等,即a=b,则椭圆就变成了圆,椭圆中的蝴蝶定理就变成了圆上的蝴蝶定理,上面的证明一样适用。由于椭圆也可以看作将一个圆经“压缩变换”而得,故圆上的蝴蝶定理经“压缩变换”也可以变成椭圆上的蝴蝶定理。“翩翩蝴蝶舞椭圆,飞落高考数学花。”读者诸君欣赏至此,是否体会到了数学命题几何专家命制高考试题的“高招”及良苦用心?
  [关于“椭圆上的蝴蝶”,张景中院士在其献给中学生的礼物一书《数学家的眼光》“巧思妙解”一节中有着精妙的论述,有兴趣的读者请参阅该书P54-59]。
  5.启示
  椭圆上的蝴蝶翩翩飞舞,飞落到了北京数学高考试题的百花(草)园,令人欣喜异常。它虽然有着竞赛数学、仿射变换、数学名题的背景,然而这里证明它,却只用到了教科书里反复提到的三点共线问题和斜率公式,用到了解析几何最基本的方法。高级中学课本《平面解析几何》全一册(必修)数处提到三点共线问题,如P13习题一第14题:已知三点A(1,-1)、B(3,3)、C(4,5)。求证:三点在一条直线上:P17练习4:证明:已知三点A、B、C,如果直线AB、AC的斜率相等,那么这三点在同一条直线上;P27习题二第9题:证明三点A(1,3)、B(5,7)、C(10,12)在同一条直线上;P47复习参考题一第3题:用两种方法证明:三点A(-2,12)、B(1,3)、C(4,-6)在同一条直线上。你看,课本上的练习、习题、复习参考题,反复提到了三点共线的证明,并且强调用不同的方法来证明。为什么?你(老师、学生)关注到了它吗?
  实际上,三点共线的不同证明,可以把解析几何第一章的重点基础知识充分调动起来,组织起来。你可以用基本公式——平面上两点间的距离公式 
  证明|AC|=|AB∣+∣BC∣;你也可以应用定比分点公式x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)去证λ=(x1-x)/(x-x2)=(y1-y)/(y-y2);你可以用过两点的直线的斜率公式Kp1p2=(y2-y1)/(x2-x1),去证KAB=KAC;你还可以先建立直线AB的方程f(x,y)=0,然后验证点C的坐标适合直线AB的方程即f(x,y)=0;你也可以在建立直线AB的方程之后,利用点到直线的距离公式 
  证明dc-AB=0;你还可以计算△ABC的面积,去证S△ABC=0。你看,有五、六种方法可以解决同一个问题,当然难度有高有低。一题多解中选择方法、优化方法也是能力(洞察、观察)的体现,从比较中才可以鉴别方法的优劣。据说考试下来,有一些重点中学的尖子生对自己没能解答出第(Ⅲ)问很懊悔,一些老师也说这个题目“运算量太大难以完成”!不知读者诸君欣赏至此,能不能发现上述问题的症结究竟发生在哪里?北京市有许多重点中学的师生,对高中数学课本的习题不屑一顾,很少去钻研教材中的例题、习题,去寻求与发现知识之间的内在联系,去总结解题的原则、思路与规律。各种各样的复习资料,几十套几十套的各地模拟试卷,使高三学生跳进题海做得昏天黑地而难以自拔,这哪里还谈得上素质教育与培养能力?我们应当从欣赏“翩翩飞舞的椭圆蝴蝶”中去用心体会“精选题目充分利用题目的“营养”价值”在数学教学与复习中的重要作用,从而解放思想,勇敢大胆地摒弃“题海战术”。而要使学生跳出题海,老师就必须首先跳入题海,“题海探珠”,感悟数学教育改革的真谛。——注重基础、注重理解、注重联系、注重能力。 
  补充:混沌论中蝴蝶定理
  数学的一门分支是混沌论。混沌论中有一个非常著名的定理——蝴蝶定理。它是说,一些最轻微的因素,能够在复杂的环境中,引起滔天的巨浪,就好比地球南半球一只蝴蝶轻轻地扇动美丽的翅膀,那微小的气流,已足已引起北半球的飓风和海啸。
  而我们怎能跟踪那叶尖的微微一颤呢? 所以经济和气象都是不可预测的,正如人生无法预测。 
  蝴蝶定理的推广
  如图I,是“蝴蝶定理”,有结论EP=PF;如图II,是“蝴蝶定理”的演变,点P,Q,R,S是否也存在某种关系呢?
  所以过圆心O的两个同心圆内弦中点M作两条直线交圆于A、B、C、D、E、F、G、H,连AF、BE、CH、DG分别交弦于点P、Q、R、S,则有等式:成立。
  证明:引理,如右图,有结论
  由及正弦定理即可得到:
  原结论
  作OM1AD于M1,OM2EH于M2,
  于是,MA - MD = MB - MC = 2MM1 = 2Msin;
  MH - ME = MG - MF = 2MM2 = 2Msin
  且MA*MD = ME*MH,MB*MC = MF*MG,代入上式,又
  故原式成立
  证毕。

什么是蝴蝶定理?

2. 蝴蝶定理是什么

  蝴蝶定理这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。
  蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。
  去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”, 不为中点时满足:1/MY-1/MX=1/MQ-1/MP ,这对2,3均成立。
        
  

3. 请问蝴蝶定理是什么?

蝴蝶定理是平面几何的古典结果。

  蝴蝶定理最先是作为一个征求证明的问题。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法。至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。 这里介绍一种较为简便的初等数学证法。 证明:过圆心O作AD与B牟垂线,垂足为S、T,连接OX,OY,OM。SM。MT。 ∵△SMD∽△CMB,且SD=1/2ADBT=1/2BC, ∴DS/BT=DM/BM又∵∠D=∠B ∴△MSD∽△MTB,∠MSD=∠MTB ∴∠MSX=∠MTY;又∵O,S,X,M与O,T。Y。M均是四点共圆, ∴∠XOM=∠YOM ∵OM⊥PQ∴XM=YM

请问蝴蝶定理是什么?

4. 什么叫蝴蝶定理

蝴蝶定理这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学刊》1944年2月号,由于其几何图形形象奇特,貌似蝴蝶,便以此命名。
蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。
去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”, 不为中点时满足:1/MY-1/MX=1/MQ-1/MP ,这对2,3均成立。
百科
http://baike.baidu.com/link?url=EhBYsRJHR2pxbt-CByAJToMnoNSqCcSPYLoCRB-vojCSm2aESUw7O8m11ya5_hG3pgYZIxDk6luxnPVnE3cUmq

5. 是么叫蝴蝶定理呀

蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上。由于其几何图形形象奇特、貌似蝴蝶,便以此命名
蝴蝶定理(Butterfly theorem)出现过许多优美奇特的解法,其中最早的,应首推霍纳在职1815年所给出的证法。至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温
   [蝴蝶定理]
蝴蝶定理
首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA。1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开。

是么叫蝴蝶定理呀

6. 什么是蝴蝶定理?

蝴蝶模型基本公式:AD:BC=OA:OC,蝴蝶定理是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现在1815年,由W·G·霍纳提出证明。而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。这个定理的证法不胜枚举,至今仍然被数学爱好者研究,在考试中时有各种变形。

7. 蝴蝶定理

分类:  教育/科学 >> 科学技术 
   问题描述: 
  
 有关蝴蝶定理的知识
 
   解析: 
  
 自从学习几何画板以来,我一直在思索着这样一个问题:怎么才能把“蝴蝶定理”推广一下。
 
 我想,能不能把“蝴蝶定理”中的圆由一个变为两个,相应的,还保持一种美妙的性质呢?如图I,是“蝴蝶定理”,有结论EP=PF;如图II,是“蝴蝶定理”的演变,点P,Q,R,S是否也存在某种关系呢?
 
 我在课下做了一个比较精确的图,并进行了测量,进而提出了猜测:QM*PM = MS*MR,或者QM+PM = MS+MR。我又做了几个图进行检验,结果误差都比较小。上机时,利用几何画板做了一个动画,发现误差变化范围很大。我就开始怀疑这个结论。但是我并不死心。我又进行了测算,终于发现等式:成立,其误差在千分位之后。而后给出了一个数学上的证明。
 
  
 
 这件事使我感觉到几何画板有以下几个妙处:比手工做图方便、精确、直观、连续。
 
 如图I,取圆O内一条弦的中点P,过P点作AB、CD交圆于A、B、C、D点,连AD、BC交弦于E、F点,则EP=PF。这就是著名的“蝴蝶定理”。
 
 题目:过圆心O的两个同心圆内弦中点M作两条直线交圆于A、B、C、D、E、F、G、H,连AF、BE、CH、DG分别交弦于点P、Q、R、S,则有等式:成立。这就是蝴蝶定理的推广。
 
 证明:引理,如右图,有结论
 
 由及正弦定理即可得到:
 
 原结论
 
 作OM1AD于M1,OM2EH于M2,
 
 于是,MA - MD = MB - MC = 2MM1 = 2Msin;
 
 MH - ME = MG - MF = 2MM2 = 2Msin
 
 且MA*MD = ME*MH,MB*MC = MF*MG,代入上式,又
 
 故原式成立
 
 证毕。

蝴蝶定理

8. 什么叫做蝴蝶定理

蝴蝶定理(Butterfly Theorem),是古代欧氏平面几何中最精彩的结果之一。这个命题最早出现在1815年,由W.G.霍纳提出证明。而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。这个定理的证法不胜枚举,至今仍然被数学爱好者研究,在考试中时有各种变形。


蝴蝶定理(Butterfly Theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。
蝴蝶定理的证明

该定理实际上是射影几何中一个定理的特殊情况,有多种推广(详见定理推广):
1. M作为圆内弦的交点是不必要的,可以移到圆外。
2. 圆可以改为任意圆锥曲线。
3. 将圆变为一个筝形,M为对角线交点。
4. 去掉中点的条件,结论变为一个一般关于有向线段的比例式,称为“坎迪定理”, 不为中点时满足:

 ,这对1, 2均成立。
[1-2] 

验证推导
编辑

霍纳证法
过O作OL⊥ED,OT⊥CF,垂足为L、T,
连接ON,OM,OS,SL,ST
可知∠F=∠D;∠C=∠E(同弧所对的圆周角相等)
△ESD∽△CSF(AAA)
证法1:霍纳证法

∴DS/FS=DE/FC
根据垂径定理得:DL=DE/2,FT=FC/2
∴DS/FS=DL/FT
又∵∠D=∠F
∴△DSL∽△FST
∴∠SLD=∠STF
即∠SLN=∠STM
∵S是AB的中点所以OS⊥AB(垂径定理逆定理)
∴∠OSN=∠OLN=90°
∴O,S,N,L四点共圆(对角互补的四边形共圆),
同理,O,T,M,S四点共圆
∴∠STM=∠SOM,∠SLN=∠SON(同弧所对的圆周角相等)
∴∠SON=∠SOM
∴∠OTS=∠OMS,∠OLS=∠ONS(同弧所对的圆周角相等)
∴∠OMS=∠ONS
∵OS⊥AB
∴在△OSM和△OSN
∠MSO=∠NSO
∠OMS=∠ONS
OS=OS
∴△SOM≌△SON(AAS)
∴MS=NS
作图法
从X向AM和DM作垂线,设垂足分别为X'和X''。类似地,从Y向BM和CM作垂线,设垂足分别为Y'和Y''。




证法2
(证明过程见图片)
证明方法二


对称法
证法3:对称证法

(证明过程见图片)

面积法

请点击输入图片描述
(证明过程见图片)【此方法也可证明蝴蝶定理的一般形式:坎迪定理】

帕斯卡证法
连接CO、EO并延长分别交圆O于I、J,连接IF、DJ交于K,
连接GK、HK。由帕斯卡定理得:M、O、K共线



证法5:帕斯卡定理证法(2张)
∵M为AB中点 ∴KM⊥AB∴∠GMK=∠HMK=90°
又∵CI、EJ为⊙O直径
∴∠GFK=∠HDK=90°
又∵∠GMK=∠HMK=90°
∴∠GMK+∠GFK=∠HMK+∠HDK=90°+90°=180°
∴G、F、K、M共圆,H、D、K、M共圆
∴∠GKM=∠GFM,∠MKH=∠MDH
又∵∠GFM=∠MDH
∴∠GKM=∠MKH
又∵∠GMK=∠HMK=90°
∴△GMK≡△HMK(ASA)
∴GM=MH

射影法


1.构造特殊情况:如右图1,A'B'、C'D'、M'N'为⊙O'内三条直径,A'D'∩M'N'=P',B'C'∩M'N'=Q',则由圆中心对称性知P'O'=Q'O'.
2.中心投影:在不属于⊙O'所在平面的空间上任取一点T作为投影中心,用平行于直线M'N'的平面截影,则圆O'被射影为椭圆,线段M'N'被射影为与之平行的M''N'',如图2,则对应存在P''O''=Q''O''.
3.仿射:将图2的椭圆仿射为圆,如图3,由仿射不变性知PO=QO.
最新文章
热门文章
推荐阅读