地球物理测井概述

2024-05-05 23:54

1. 地球物理测井概述

地球物理测井,简称测井(Well Logging),是用各种地球物理方法在井中进行勘查工作的总称。
将测井与地面地球物理相比,许多方法的基本理论大体相同。由于井下探测的特殊性,测井的探测环境、研究对象、数据采集,以及一整套数据处理和资料解释技术都与地面物探有着完全不同的概念。正是由于它能直接面对被探测对象进行测量,因而测量结果的真实性和可靠性,以及解决地下地质问题的能力和精细程度明显高于地面地球物理方法。也需要指出,由于测井探测范围的局限,所能提供的地球物理数据主要是井孔附近(探测器周围)介质的响应,即从宏观来看是一个井点的地层特征,从区域研究的角度,它又不如地面地球物理。
根据探测对象及研究任务的不同,测井细分为油气田测井(石油测井)、煤田测井、金属与非金属测井和水文与工程测井几个小的分支。无论哪一类测井,都是根据地下不同岩、矿石或探测对象所表现的物理性质的差异,通过某种物理参数的测定来研究钻井地质剖面,确定目的层段,并对其进行定量或半定量评价。本篇主要讲述这一学科的一些基础理论、方法原理和资料处理解释技术。
地球物理测井的最初工作始于法国(1927年),七十多年来,随着勘探工作的不断深入和科学技术的进步,测井技术经历了一系列的变革和发展,逐渐形成了以电学、声学、核学为主体,结合热学、磁学、力学和光学的一整套测井方法、仪器设备及资料解释技术。目前,已有的测井手段可多达数十种,根据它们的物理基础和应用领域,可作如下分类。
13.1.1 按岩石物理性质分类
(1)电测井类
这是以研究岩石导电性、介电特性和电化学活动性为基础的一类测井方法。它利用某种井下装置或仪器,通过测量岩石的电阻率、介电特性和电化学特性来解决地下地质问题的,在各类矿产的勘探开发中应用最为广泛。属于这类的测井方法主要如下。
1)普通视电阻率测井。
2)侧向测井。包括深、浅侧向(或双侧向)、微侧向和微球形聚焦测井等。
3)微电阻率(或微电极系)测井和微电阻率扫描测井。
4)感应测井。包括深、中感应(或双感应)和阵列感应测井。
5)电磁波传播测井。
6)自然电位测井。
(2)声测井类
这是以研究声波在岩石中传播时,其速度、幅度和频率变化等声学特性为基础的一类测井方法。它广泛用于地震解释,确定地层孔隙度和储层裂缝分析等。属于这类的测井方法主要如下。
1)声波速度测井。包括普通声波测井和偶极声波测井。
2)声波幅度测井。
3)声波全波列测井。
4)井下声波电视。
(3)核测井类
这是以研究岩石核物理性质为基础的一类测井方法,也称放射性测井。它包括岩石的自然放射性和人工放射性两类,广泛应用于确定岩石性质与地层孔隙度,以及储层裂缝分析等。属于这类的测井方法主要如下。
1)自然伽马及自然伽马能谱测井。
2)密度测井。包括补偿密度和岩性密度测井。
3)中子测井。包括补偿中子、中子寿命、次生伽马能谱和中子活化测井。
(4)其他类型测井
除了上述几个大的测井分类之外,还有一些测井手段具有一定的特殊性,它们如下。
1)核磁测井。
2)磁测井。
3)重力测井。
4)地层倾角测井。
5)井径及井斜测量。
6)井温测井。
7)用于监控油气储层的流量测井和地层压力测井(电缆地层测试器)。
13.1.2 按地质应用的测井组合分类
不同测井手段由于其所测岩石物理性质和仪器结构设计等差异,解决地质问题的能力和侧重不尽相同。同时,也由于地下地质情况的复杂性,许多地质问题常常又需要多种测井方法共同配合去解决。因此,从实用的角度出发,有人又将测井按地质应用进行系列分类。因此,以下的分类组合只能理解为它的主要应用领域而不是全部。另外,有些测井方法还很难归类于某种地质应用之中。
(1)饱和度测井系列
目前,用于研究油气储层饱和度的测井方法主要是电阻率测井。这是因为组成储集岩石的矿物颗粒(骨架)和油气具有非常高的电阻率,其导电性主要与岩石孔隙中所含导电流体(水)的数量,即含水饱和度以及该流体的电阻率有关。因此,利用深、浅、微电阻率测井组合,如双侧向-微侧向(或微球形聚焦)组合,或深、中感应-微侧向组合,可以研究冲洗带含水饱和度和原状地层含水饱和度,进而确定可动油气和残余油气体积,这两类测井组合常称为饱和度测井系列。
此外,可用以研究油气储层饱和度的测井方法还有中子寿命测井和电磁波传播测井,但它们在实际工作中应用较少。
束缚水饱和度也是评价油气储层,特别是评价渗透率的重要参数,但所述这些测井方法均无能为力。核磁测井对确定这一参数有独到之处。
(2)孔隙度测井系列
目前,测定岩石孔隙度的测井方法主要是声波(速度)测井、密度测井和中子测井。
需要指出,在定量研究岩石孔隙度时,岩性资料必不可缺。不知道岩性,孔隙度也难以求准。这三种方法的组合,能在一定程度上分析岩性并同时确定孔隙度。因此,有时又将它们称为岩性孔隙度测井。
(3)岩性测井系列
有些测井方法虽不能用于研究岩石孔隙度和饱和度,但确定岩性的能力较强,我们把它归为一类,称为岩性测井。这些方法是自然电位测井、自然伽马测井、岩性密度测井,以及自然和人工伽马能谱测井等。后三种测井方法对于定量评价复杂岩性的岩石成分具有重要的作用。
(4)地层倾角测井系列
地层倾角测井最初主要用于测量井下岩层的倾斜角和倾斜方位,并由此研究地质构造、断层和沉积特征等。随着探测仪器的不断改进,相继发展了高分辨率地层倾角测井和地层学地层倾角测井,这一测井方法的地质应用领域向着更精细的地层学和沉积学研究方向进一步发展。
(5)成像测井系列
成像测井是20世纪90年代迅速发展起来的新型测井技术,它主要由电成像测井、声成像测井、核成像测井,以及数字遥传系统的多任务数据采集与成像系统组成。其中电成像测井有地层微电阻率扫描成像和阵列感应成像测井等方法;声成像测井有偶极横波声波成像、超声波电视和阵列地震成像测井等方法;核成像测井有阵列中子孔隙度岩性成像、碳氧比能谱成像和地球化学成像测井等方法。这些成像测井技术,为复杂、非均质储层的地质分析和油气勘探开发提供了有效的手段。
(6)其他
还有一些测井方法,如井斜、井径测量及套管井声幅测井等常归为工程测井;中子寿命测井和碳氧比测井属于开发测井范畴;地层流量测量、压力测量以及井温、流体密度和持水率计测井等又属于生产测井等等。

地球物理测井概述

2. 什么是地球物理测井技术?

井下地层是由各类岩石所组成的,不同的岩石具有不同的物理、化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘学科——测井学,简称“测井”。它以地质学、物理学、数学为理论基础,采用计算机信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层的各种物理化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田开发提供重要数据和资料。测井的井场作业由测井地面仪器、绞车和电缆组成,通过电缆把下井仪器放到井底,在提升电缆过程中进行测量。地球物理测井包括以下方法:
(1)电测井,如视电阻率测井、侧向测井、感应测井、阵列感应测井等,能在各种井眼条件下测量地层电阻率。
(2)电磁波传播测井,测量岩石介电常数,利用地层电阻率和介电常数能准确地划分出油气层。
(3)地层倾角测井,确定井下地层的产状和构造。
(4)全井眼地层微电阻率扫描成像测井,能研究地层结构、层理及裂缝等,并能给出井壁成像。
(5)声波测井,如声速测井、阵列声波测井、偶极声波成像测井等,可用于确定地层孔隙度、渗透率、裂缝及机械特性等。井下声波电视可提供井壁图像,是成像测井系列的重要方法之一。
(6)核测井(放射性测井),自然伽马测井用于测量岩石的自然放射性,自然伽马能谱测井可确定岩石中铀、钍、钾的含量。用伽马射线源照射地层可确定地层的岩性和密度,称为岩性密度测井。用中子源照射地层可研究地层的中子特性,包括中子测井、中子寿命测井、碳氧比测井、中子活化测井等,用于确定井下地层的岩性、孔隙度及含油饱和度,是划分油、气、水层的重要方法。
(7)近年来又兴起一种新的测井方法——核磁共振测井,能测量地层孔隙度、束缚水及可动流体饱和度。
(8)热测井,测量井下地层温度。
在油井生产过程中测量各地层的油气产量的方法统称生产测井。
地球物理测井已成为勘探地下油气藏及其他有用矿产的重要方法,在能源、矿产资源建设中起着重要作用。
测井技术是油气勘探的“眼睛”。中国的隐蔽性油气藏多,客观要求这双眼睛特别明亮、敏锐,可是常规测井技术只能对地层性质做大致的划分,精度不够,需要一种新的测井手段,就是成像测井。这种技术采集信息多,精度高,不受干扰,能准确确定地层的真正电阻率,是解决复杂储层测井评价的有力手段。从20世纪90年代起,我国开始进口国外的成像测井装备。后来,中国测井技术人员研制出拥有自主知识产权的测井成像装备,整体性能达到国际在用设备先进水平。这标志着中国测井技术进入成像时代。

3. 地球物理测井

水文地质测井在水文地质勘查工作中日益得到广泛的应用。它主要用于钻孔剖面的岩性分层、判断含水层(带)、岩溶发育带和咸淡水分界面位置(深度)及确定水文地质参数等。当采用无心钻进或钻进取心不足时,物探测井更是不可缺少的探测手段。物探测井的地质—水文地质解释精度远比前述的地面物探方法精度高。
目前,水文地质钻探中常用的测井方法及应用情况见表4-2。在实际工作中,各种测井方法要相互配合,以提供更多、更可靠的地质、水文地质信息。另外,物探测井要与钻探取心和水文地质观测资料密切配合,才能取得最佳效果。
电法测井(或称电测井)在地球物理测井方法中使用广泛,效果好,且简便易行。电测井的工作原理是利用仪器(如JDC型轻便电子自动测井仪等),并通过电缆把井下装置(如电极系统)送入管井中进行测量。在电缆从井底向上提升的过程中,用仪器记录各地层的电阻率(ρS)、电位差(ΔU)等。通过绘制有关曲线,即可进行水文地质解释。电测井的资料,如有钻孔资料作校正,就会取得更好的效果。图4-5是某地根据管井的电测井曲线,划分地层和咸淡水分界。

表4-2 常用的地球物理测井方法及应用情况


图4-5 管井的电测井曲线和水文地质解释

尚需指出,水文地质人员应根据工作任务,工作区的地质、水文地质条件和物探人员一起合理确定物探方法,选定物探测线、测点的布置方案和测量装置等。最好能使用综合物探手段完成同一项任务,以相互验证,取长补短,提高成果解释的可靠性和精度。
值得注意的是,各种物探方法都有其局限性,其成果具有多解性。物探曲线常反映了探测对象本身和其他多种自然或人为因素的综合影响,因此,只有了解具体的地质—水文地质背景和各种干扰因素的可能影响,才能进行正确的解释,否则对于测量成果常常可以作出多种或错误的解释。所以在使用物探方法时,应针对具体地质环境,进行分析对比,综合研究,以便客观的反映地质和水文地质条件,从而使所得资料更为真实可靠。因为含水层或富水段没有固定不变的异常标志,为了提高测量成果解释的可靠性,最好首先在露头较好地段或已有勘探井旁进行试验,确定出探测对象异常的形态、性质和幅度,从而制定出可靠的解释标志。例如,在视电阻率较高的石灰岩、岩浆岩和砂岩中,一般以低阻异常作为有水的标志,但在视电阻率本来就较低的碎屑岩及结晶片理发育的岩石中,高阻异常带则常常是有水的标志。因此,符合已有水井旁试验得出的解释标志,才是可靠的。
小结
本章的重点是物探方法的使用条件和在水文地质调查中的应用。电法勘探中的电阻率法和电测井应用最广,应掌握该种方法及其应用。
复习思考题
1.水文地质物探方法的基本原理是什么?
2.物探方法的使用条件是什么?
3.水文地质物探的主要任务是什么?
4.电法主要有哪些种类?应用情况如何?
5.试述电阻率法的原理和应用条件?
6.试述激发极化法的原理和应用条件?
7.试述自然电场法的原理和应用条件?
8.试述交变电场法的原理和应用条件?
9.试述放射性探测法的原理和应用条件?
10.地球物理测井的方法有哪些?应用情况如何?
11.如何提高物探方法的可靠性和精度?

地球物理测井

4. 地球物理测井的解释

根据处理后所得到的数据或地质参数曲线,对钻孔的目的层作出定性、定量评价。对石油勘探与开发则包括判断岩性、判断油、气、水层、计算油气储量等;对煤田勘探则主要是划分煤层、并对煤层的品位作出评价。图1和图2是油田中碳酸盐岩剖面和砂-泥岩剖面计算机处理解释成果图的实例。图中:岩石体积成分为显示地层有效孔隙度(Фe)、粘土含量(Vc)和岩石骨架矿物含量(Vm)测井解释曲线;流体体积成分为显示地层有效孔隙体积()、冲洗带地层含水孔隙体积 ()和原状地层含水孔隙体积(V·ФW =ФSW)测井解释曲线;油气分析为显示原状地层含水饱和度(SW)、冲洗带地层残余油气体积(Vhr=Ф ·Shr)和冲洗带地层残余油气质量(mhr=Ф·Shr·ρh)测井解释曲线;地层特征就是显示地层次生孔隙度指数(SPI)、平均岩石骨架颗粒密度()和渗透率指数(KI)测井解释曲线。在地层体积成分与流体成分之间显示一条井径差值曲线。

5. 地球物理测井的介绍

地球物理测井简称测井,是在钻孔中使用测量电、声、热、放射性等物理性质的仪器,以辨别地下岩石和流体性质的方法,是勘探和开发油气田的重要手段。

地球物理测井的介绍

6. 地球物理测井包括哪些方法?

油气田的地球物理法包括地球物理勘探和地球物理测井。地球物理勘探已在前一节中做了介绍,本节将介绍地球物理测井方法,简称测井。
地球物理测井已广泛应用于石油地质勘探和油气田开发过程中。应用测井方法可以划分井筒地层剖面、确定岩层厚度和埋藏深度、进行区域地层对比,还可以探测和研究地层的主要矿物成分、裂缝、孔隙度、渗透率、油气饱和度、倾向、倾角、断层、构造特征、沉积环境与砂岩体的分布等参数,对于评价地层的储集能力、检测油气藏的开采情况、精细分析和研究油气层等具有重要的意义。
目前,常用的测井方法主要有电法测井、声波测井和放射性测井等。
一、电法测井不同岩石的导电性不同,岩石孔隙中所含各种流体的导电性也不同。利用该特点认识岩石性质的测井方法称为电法测井。电法测井包括自然电位测井、电阻率测井和感应测井等。
1.自然电位测井1)基本原理自然电位测井是根据油井中存在着扩散吸附电位进行的。在打井钻穿岩层时,地层岩石孔隙中含有地层水。地层水中所含的一定浓度的盐类要向井筒内含盐量很低的钻井液中扩散。地层水所含的盐分以氯化钠为主,钠离子带正电,氯离子带负电。由于氯离子移动得快,大量进入井筒内钻井液中。致使井内正对着渗透层的那段钻井液带负电位,形成扩散电位。而这种电位差的大小与岩层的渗透性密切相关。地层渗透性好,进入钻井液里的氯离子就多,形成的负电位就高;地层渗透性差,氯离子进入钻井液里就少,形成的负电位就低。因此,含油渗透层在自然电位曲线上表现为负值,而不渗透的泥岩层等则显正值(图3-2)。

图3-2 自然电位曲线
2)测井方法自然电位测井装置如图3-3所示。将电极M放于井中,同时在地面放置另一电极N。两电极之间用电位差计连接起来,就可测得它们之间产生的电位差。若将井孔中的电极由下向上移动,则可测得一条与岩石及孔隙中液体有关的曲线。该曲线即为自然电位曲线。

图3-3 自然电位测井
3)自然电位曲线的主要用途自然电位测井是电法测井中必不可少的一项测井内容,自然电位曲线的主要用途有:
(1) 判断岩性,确定渗透性层位;(2) 估算地层的泥质含量;(3) 判断水淹层位。
2.电阻率测井1)基本原理各种物质的导电性可以用电阻率来表示。电阻率小的物质导电性好,电阻率大的物质导电性差。地下各种岩石的电阻率不同。即使岩石相同,若其孔隙中所含的流体不同,所含油、水、气的比例不同,其电阻率也不同。含油砂岩的电阻率高;含水砂岩的电阻率低。所以,测量电阻率的方法可以了解地下油层和岩石的性质。
2)测井方法自然电位测井是在不供电的情况下进行的。但是,电阻率测井必须供电,造成人工电场,用以激发被测物质的导电特性,从而测量出激发物质中任意两点之间的电位差。
如图3-4所示,设整个空间是均匀介质,A和B是供电电极,M和N是测量电极。测井时,当地面供电后,电流从A点流出来,流向四周的岩层和井眼钻井液中去,然后流回到B点。M、N两点之间的电位差由检流计测得。

图3-4 视电阻率测井
在均匀介质中,测量电阻率的计算公式为:

式中K为井中电极A、M、N所组成的电极系的系数,其大小只与三个电极之间的距离有关。上式表明:均匀介质的电阻率与测量电极系的结构、供电大小(I)及测量电位差(ΔV)有关。当电极系的结构和供电大小一定时,均匀介质的电阻率与测量电位差成正比。因此,当把电极系沿着井眼移动时,检流计所记录的电位差的改变就反映了M、N所在地层的电阻率的变化。
但在实际测井时,电极是放入了充满钻井液的井中。井筒周围是各种不同厚度、不同电阻率的地层。对于渗透性地层还有钻井液侵入,侵入带的电阻率往往不同于原地层的电阻率。在这种情况下,电流的分布是很复杂的,要从理论上得出电阻率的计算公式是很困难的。因此,我们从实测曲线上求出的地层电阻率有所失真,是近似值,称为视电阻率。这种曲线就叫做视电阻率曲线。地层的视电阻率不同于地层的真电阻率,但它们之间有一定的关系。一般来说,地层真电阻率越大,其视电阻率也越大。因而在井内测得的视电阻率曲线能反映井剖面的地层电阻率的相对变化,可用于研究井剖面的地质情况。
各种地层的电阻率是不同的。石灰岩、白云岩的电阻率高,砂岩的电阻率中等,泥岩、页岩的电阻率很低。就是同一种地层,电阻率也会不同。这是因为地层中所含流体和导电矿物不同、其温度和压力等也是不同的,它们都会引起地层电阻率改变。如果砂岩中含盐水,电阻率就低;若含淡水,电阻率就高。石油的电阻率很高。在一个储集层中,若上部含油下部含地层水,则含油部分的含水饱和度低,电阻率高,而含水部分的含水饱和度高,电阻率低。根据该层的电阻率自下而上由低升高的位置,在油井下套管以前就能把油水分界面的位置确定出来,如图3-5所示。

图3-5 视电阻率曲线
3)视电阻率曲线的主要用途视电阻率曲线的主要用途有:
(1) 研究储集层的渗透性、孔隙性和含油性;(2) 划分油层、气层和水层;(3) 进行地层对比;(4) 判断岩性。
3.感应测井前面讨论的电阻率测井方法需要井内有导电的液体,因此只能用于导电性能较好的钻井液中。然而,在油田的勘探过程中,为了获得地层的原始含油饱和度,个别井中需要使用油基钻井液。这种情况下井内没有导电介质,不能使用直流电法测井。为此进行研究,产生了感应测井。感应测井不仅可以用于油基钻井液的井中,还可以用于淡水钻井液的井中,是中等和低电阻地层的主要测井方法。在一定条件下,感应测井比电阻率测井法优越,因此已被广泛应用。
感应测井是利用电磁感应的原理来了解地层的导电性能。测量出的视电导率随井眼深度的变化曲线称为感应测井曲线。感应测井曲线的主要用途与电阻率测井曲线的主要用途相似。
二、声波测井利用不同岩石对声波的吸收能力和传播速度的差异,研究井下岩层、油层、气层、水层以及检查固井质量的测井法称为声波测井。
1. 岩石的声学性质与岩性的关系声波通过灰岩的速度快,通过砂岩的速度中等,而通过泥岩的速度小。岩石越致密,声波通过的速度越大。因此,储集层的孔隙度愈大,声速愈小;反之亦然。在砂泥岩地区,可用声速计算储集层的孔隙度。在储集层岩性和孔隙度相同的情况下,声速与储集层所含流体的性质有关,尤其是含气层,声速明显降低。此外,声速还与岩石结构有关。裂缝发育的岩石会造成声速明显降低。几种常见物质的声学特性见表3-3。


几种常见物质的声学特征
2.测量原理图3-6为声波时差测井原理图。当发声器发出一个声脉冲后,声波向四面传播。由于岩层比钻井液致密,井壁就成为声波的反射和折射面。声波传播到井壁时发生反射和折射。其中有一束折射波(又叫滑行波)沿井壁方向传播,并产生子波传到接收器,使之收到声波脉冲。在声波路径不变的情况下,通过这一路程的传播时间t与钻井液和岩石的声学特性有关。

图3-6 声波时差测井原理图
为了消除钻井液的影响,实际测井时常采用双接收器的仪器进行声波时差测井(图3-6)。当井径不变时,间距为Z的两个接收器收到的首波时间差Δt,就只与岩层的声学特性有关。因此,当测井仪沿着井眼由下往上移动时,就可测量出声波时差随井眼深度的变化曲线,该曲线称为声波时差测井曲线,其主要用途是:
(1)判断和划分岩性;(2)确定储集层孔隙度和划分裂缝性渗透层;(3)划分油层、气层、水层;(4)检查固井质量。
三、放射性测井放射性测井是根据岩石和介质的核物理性质研究钻井地质剖面、寻找油气藏以及研究油井工程问题的地球物理方法。根据探测射线的类型,放射性测井可分为两类,即探测伽马射线的伽马测井和探测中子的中子测井。
1. 伽马测井伽马测井方法包括自然伽马测井、伽马—伽马测井和放射性同位素测井等方法。这里只介绍自然伽马测井。
自然伽马测井是通过测量岩层的自然伽马射线的强度来认识岩层的一种放射性测井方法。自然伽马测井在井内所测得的伽马射线,是由岩层中自然存在的放射性元素的原子核在衰变过程中发射出来的。
1)基本原理不同岩石中放射性元素的种类和含量不同。岩石的放射性元素含量与岩石的岩性及岩石形成过程中的物理化学条件有关。一般来说在三大岩类中火成岩的放射性最强,其次是变质岩,最弱的是沉积岩。由于泥质颗粒细,具有较大的比面,使得它吸附放射性元素的能力较大。而且因为沉积时间长,有充分时间使放射性元素从溶液中分离出来与泥质颗粒一起沉积下来,所以泥质、粘土的放射性较高。
2)测量原理自然伽马测井的测量原理如图3-7所示。测量装置由井下仪器和地面仪器组成。井下仪器有探测器(闪烁计数器)、放大器、高压电源等几部分。自然伽马射线由岩层穿过钻井液及仪器外壳进入探测器。探测器将伽马射线转化为电脉冲信号,经过放大器把电脉冲放大后由电缆送到地面仪器。地面仪器把每分钟形成的电脉冲数转变成与其成比例的电位差进行记录。

图3-7 自然伽马测井原理图
1—高压电源;2—放大器;3—探测器;4—电缆;5—地面仪器井下仪器沿井身自下而上移动,就连续记录出井剖面上岩层的自然伽马强度曲线,该曲线称为自然伽马测井曲线。
在油气田勘探和开发中,自然伽马测井曲线主要用于划分岩性、确定储集层的泥质含量以及进行地层对比。
2. 中子测井中子测井是以中子源轰击岩石的测井方法的统称。根据源的不同,分成化学源和脉冲中子源。根据记录信息可划分为中子伽马测井、热中子测井、超热中子测井、脉冲中子测井、脉冲中子伽马能谱测井等。
当中子源产生的中子(叫快中子)高速射入地层后,由于不断地与地层中各元素的原子核碰撞,其速度减慢、能量降低。当其能量降低到0.025eV时即成为热中子。热中子在地层中作热运动,最终被地层中的某些原子核俘获。所产生的新的原子核能放出伽马射线,此射线称为中子伽马射线,也称俘获伽马射线或次生伽马射线。地层中各种元素的原子核对中子的减速、俘获作用是不相同的。中子能量的损失是碰撞角度和靶核的相对质量的函数。下面以中子伽马测井为例介绍中子测井的基本原理。
中子伽马测井是用仪器在井中测定中子伽马射线的强度。测井时用电缆把仪器放到井底,在向上提升仪器的同时进行测量。装在下井仪器下部的中子源向周围地层发射快中子。记录中子伽马射线的装置距离中子源约50~60cm(叫源距),两者用铅屏蔽隔开。记录的射线强度转变成电脉冲后由电缆送到地面仪器。地面仪器把脉冲信号转变成与计数率成正比的电位差,再由照相记录仪记录成随深度变化的测井曲线。
中子伽马探测器在单位时间内测得的伽马射线数与地层中热中子的密度成正比。快中子与氢的原子核碰撞时损失的能量最多。当地层中氢含量大时,中子源发射出的快中子在中子源附近很快就变成热中子了,很快被地层吸收。只有很少一部分能达到探测器,因此中子伽马测井计数率就低;当地层中含氢少时,快中子能量衰减慢,在离中子源比较远的地方(即探测器附近),多数中子才变成热中子,被俘获后放出的伽马射线多,则中子伽马测井计数率高。因此,中子伽马测井能够反映出地层的含氢量。
如果储集层岩石的骨架不含氢,地层岩石的含氢量就为孔隙空间的含氢量。若地层的孔隙空间饱含水或油,那么水或油的体积就是地层的孔隙体积,岩石的含氢量就只取决于孔隙度。因此,可以用中子伽马测井曲线来计算孔隙度。
四、测井资料的综合解释要正确应用测井数据、曲线等资料解决地质问题,必须对其进行综合解释。
一方面要对各种测井方法本身进行综合解释。这是因为每一种测井方法都是从某一种物理性质上间接反映地层的情况,而地层情况是千变万化的。因此,为了全面了解油气层的性质,人们通常在同一口井中用几种以至几十种不同的方法进行测量和综合分析。图3-8是应用5种测井方法测得的曲线来划分油层、气层、水层的。自然电位曲线上反映的油层、气层、水层的幅度值都较其他岩层高,据此可首先找到将油层、气层、水层。但是哪一层是油层、哪一层是水层、哪一层是气层?由于油层、气层、水层的自然电位接近,只根据自然电位曲线不能分析判别出来。然而在声波和中子伽马曲线上,气层的值比油层、水层的值都高,据此即可把气层和油层、水层分开。再利用油层比水层电阻率高的性质,通过视电阻率测井曲线把油层和水层分开。

图3-8 判断油气水层的测井资料综合解释
另一方面要对测井以外的资料(如该井的钻井、地质和工程资料等)进行综合分析和解释,搞清楚油层、气层和水层的岩性、储油物性(孔隙度和渗透率)、含油性(含油饱和度、含气饱和度或含水饱和度)等。
思 考 题
1. 什么叫油气田?什么叫含油气盆地?
2. 区域勘探和工业勘探分别可划分为哪两个阶段?
3. 地球物理勘探法主要包括哪些方法?简述各种方法的基本原理。
4. 地球化学勘探法的主要原理是什么?具体包括哪些方法?
5. 地质录井包括哪些方法?
6. 地球物理测井主要包括哪些方法?分别主要有哪些用途?
7. 简述声波测井的基本原理。

7. 地球物理测井方法

许多地球物理测井方法都可配合钻探取心和钻探简易水文地质观测资料,用于钻孔剖面的岩性分层,判断含水层、岩溶发育带和咸淡水分界面位置深度,有时还可测定某些水文地质参数。当采用无心钻进或钻进取心不足时,物探测井更是不可缺少的探测手段。物探测井的地质水文地质解释精度,远比前述的地面物探方法要高。
目前,水文地质钻探中常用的测井方法有五类:一类为电法测井,包括视电阻率法中的普通视电阻率测井、井液电阻率测井和自然电位测井;二类为放射性测井,包括伽马-伽马测井、中子测井和放射性同位素测井;三类为声波测井;四类为热测井,还常使用流速测井;五类为工程测井(井经、井斜测量)。各种测井方法相互配合,可以提供更多、更可靠的地质-水文地质信息,可使水文地质钻孔发挥更大的勘察效益。
上述许多物探测井法,除完成井孔地质剖面的测量任务外,还可粗略地测定含水层的某些水文地质参数。如普通视电阻率测井,可测定岩石电阻率参数和岩石孔隙度;井液电阻率测井,可比较含水层的富水性,求地下水的渗透速度和间接计算渗透系数;伽马-伽马测井,可确定含水层和岩石的孔隙度;中子测井,可确定孔隙度和测定含水量;放射性同位素测井,是目前测定地下水流向、流速、渗透系数和水质弥散系数的主要方法;流速(流量)测井,可直接测量出钻孔中各个含水层(或含水段)的流速和水量,并能计算出含水层(段)的渗透系数,确定钻孔中各个含水层之间的相互关系。

地球物理测井方法

8. 地球物理测井的生产测井

测量套管井内流体的流量、含水率、压力、温度等参数。它是在射孔作业以后进行的油井生产动态测井。此外,在水文地质勘探中也有广泛用途。生产测井可以分为流量测井、含水率测井、压力测井及温度测井等。数据处理和解释  各种测井仪所记录的测井信息,分为数字磁带记录和连续的模拟曲线照相记录两类。后者属于老的记录方式,当需要使用计算机处理时,必须通过数字化仪对连续的模拟曲线进行采样,并将数据记录在数字磁带上。